
From MPI to OpenSHMEM: Porting LAMMPS

Chunyan Tang1, Aurelien Bouteiller1(B), Thomas Herault1,
Manjunath Gorentla Venkata2, and George Bosilca1

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
{bouteill,bosilca,herault}@icl.utk.edu, ctang7@vols.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
manjugv@ornl.gov

Abstract. This work details the opportunities and challenges of
porting a Petascale, MPI-based application —LAMMPS— to OpenSH-
MEM. We investigate the major programming challenges stemming from
the differences in communication semantics, address space organization,
and synchronization operations between the two programming models.
This work provides several approaches to solve those challenges for rep-
resentative communication patterns in LAMMPS, e.g., by considering
group synchronization, peer’s buffer status tracking, and unpacked direct
transfer of scattered data. The performance of LAMMPS is evaluated on
the Titan HPC system at ORNL. The OpenSHMEM implementations
are compared with MPI versions in terms of both strong and weak scal-
ing. The results outline that OpenSHMEM provides a rich semantic to
implement scalable scientific applications. In addition, the experiments
demonstrate that OpenSHMEM can compete with, and often improve
on, the optimized MPI implementation.

1 Introduction

OpenSHMEM [12] is an emerging partitioned global address space (PGAS)
library interface specification that provides interfaces for one-sided and collective
communication, synchronization, and atomic operations. The one-sided commu-
nication operations do not require the active participation of the target process
when receiving or exposing data, freeing the target process to work on other
tasks while the data transfer is ongoing. It also supports some collective commu-
nication patterns such as synchronizations, broadcast, collection, and reduction
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operations. In addition it provides interfaces for a variety of atomic operations
including both 32-bit and 64-bit operations. Overall, it provides a rich set of
interfaces for implementing parallel scientific applications. OpenSHMEM imple-
mentations are expected to perform well modern high performance computing
(HPC) systems. This expectation stems from the design philosophy of Open-
SHMEM on providing a lightweight and high performing minimalistic set of
operations, a close match between the OpenSHMEM semantic and hardware-
supported native operations provided by high performance interconnects and
memory subsystems. This tight integration between the hardware and the pro-
gramming paradigm is expected to result in close to optimal latency and band-
width in synthetic benchmarks.

In spite of a rich set of features and a long legacy of native support from
vendors, like SGI, Cray [3], and Quadrics (no longer available), OpenSHMEM
has seen a slow and limited adoption. The current situation is analogous to a
freshly plowed field ready for seeding, in this case, with an initial effort to design
software engineering practices that enable efficient porting of scientific simula-
tions to this programming model. This paper explores porting LAMMPS [11],
a production-quality Message Passing Interface (MPI) based scientific applica-
tion, to OpenSHMEM. Due to big differences in semantic and syntax between
MPI [9] and OpenSHMEM, there is no straightforward one-to-one mapping of
functionality. In particular, OpenSHMEM features one-sided communication and
partitioned global address space, unlike most legacy MPI applications which
employ two-sided MPI communication and a private address space for each MPI
process. Furthermore, MPI provides explicit controls over communication pat-
terns (e.g., communicator division and communication based on process grouping
and topology) to improve programming productivity, while OpenSHMEM does
not yet have support for these fine grained controls. Hence, transforming an
MPI-based program into an OpenSHMEM-based one remains a difficult, and
largely unexplored exercise.

2 Related Work

Despite salient differences in key concepts, MPI-3 [4] provides advanced one-
sided operations, and investigations are ongoing to understand how to port from
MPI-1 to MPI-3 RMA; initial results have demonstrated significant speedup [8].
OpenSHMEM, as an open standard for all SHMEM library implementations [2],
was first standardized in 2012. Despite its expected benefits, the scientific com-
puting community is still in the initial phase of exploring the OpenSHMEM
concepts, hence a limited number of works using OpenSHMEM are available.
Pophale et al. [13] compared the performance and scalability of unoptimized
OpenSHMEM NAS benchmarks with their MPI-1 and MPI-2 counterparts.
They showed that even without optimization, the OpenSHMEM-based version
of the benchmarks compares favorably with MPI-1 and MPI-2. Li et al. [7]
re-designed an MPI-1 based mini-application with OpenSHMEM. They demon-
strated a 17 % reduction in total execution time, compared to the MPI-based
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design. Similar results have been demonstrated for the Graph500 benchmark [6],
while in [5], the authors have refactored an Hadoop parallel sort into an hybrid
MPI+OpenSHMEM application, demonstrating a 7x improvement over the
Hadoop implementation.

The work presented in this paper also focuses on leveraging OpenSHMEM
in an application. However, instead of working on a mini-app or benchmark,
we tackle a realistic, large-scale HPC application. We aim at understanding the
opportunities and challenges of using the OpenSHMEM programming paradigm
to translate and design highly scalable scientific simulations. Our work reveals
strengths and limitations in OpenSHMEM, demonstrates better performance
than legacy MPI in a large-scale performance evaluation, and discusses the merits
of some optimization strategies.

3 Background

This section presents the target application, LAMMPS. It also presents a sum-
mary explaining the major differences between OpenSHMEM and MPI.

3.1 LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a
classical molecular dynamics (MD) code developed by Sandia National
Laboratories1. In essence, LAMMPS integrates Newton’s equations of motion
with a variety of initial and/or boundary conditions. The Newton’s equations
calculate the motion of collections of atoms, molecules, or macroscopic particles
that interact via short- or long-range forces [11].

Fig. 1. Parallel 3D-FFT in 2D decomposition.

To compute the long-range Coulomb interactions, LAMMPS employs the
three dimensional fast Fourier transform (3D-FFT) package, a transpose based
parallel FFT developed by Steve Plimpton [10]. Transpose-based FFT performs

1 http://lammps.sandia.gov/.

http://lammps.sandia.gov/
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one dimension of 1D-FFT at a time, and transposes the data grid when needed.
The 2D decomposition of parallel 3D-FFT is shown in Fig. 1. The three dimen-
sions of the real space are labeled as Slow, Mid, and Fast axes, respectively.
A data grid of size l ×m× n is divided between 1 × p× q processes. Hence the
split size of the sub-domain is nfast = l, nmid = m/p, and nslow = n/q. Each
process contains a sub-domain (pencil) of the data. First, each process performs
the 1D-FFT along the Fast axis, where the data on this direction are local. The
processes then transpose the Mid and Fast axes in order to perform the local
1D-FFT along the Mid axis. Finally, processes transpose the Mid and Slow axes
and then perform a 1D-FFT along the Slow axis.

As an initial step to the analysis, we collected statistical information about
MPI usage in LAMMPS with the MPI profiling tool (mpiP [14]). We used the
rhodopsin test case (as provided by the LAMMPS test suite). The input file for
this benchmark provides a basic problem size of 32 K atoms. The problem size for
profiling is scaled to 8×8×8×32K atoms. In this strong scaling benchmark, the
portion of time spent in MPI function over the total application time is 5.5 %
for 256 processes, 12.6 % for 512 processes, 18.1 % for 1024 processes, 25.4 %
for 2048 processes and 38.5 % for 4096 processes, respectively. Clearly, commu-
nication is a dominating factor in the overall performance, therefore reducing
the communication time has the potential to improve LAMMPS performance
significantly at scale.

In this test case, LAMMPS has 167 sites with calls to MPI functions. Doing a
complete port of MPI-based LAMMPS to OpenSHMEM is a large undertaking
which is unlikely to be completed in short order. Instead we chose to focus
our efforts on the most data exchange intensive site, the remap 3d function,
which is responsible for the transpose operations in the 3D-FFT. The remap 3d
function employs a set of MPI point-to-point operations (MPI Send, MPI Irecv,
MPI Waitany) which concentrate the largest share of the overall transmitted MPI
byte volume (32.45 % for 4096 processes). Consequently, any communication
performance improvement in this function is expected to yield a sizable overall
acceleration.

The resulting application is a hybrid MPI-OpenSHMEM application, where
the legacy MPI application is accelerated with OpenSHMEM communication
routines in performance critical sections.

3.2 OpenSHMEM Vs. MPI

To transform the above MPI-based implementation into one based on OpenSH-
MEM, we must account for four salient differences between the two programing
models.

Address Space Differences: MPI considers a distributed address space, where
each process has a private memory space, in which addresses are purely local.
In contrast, OpenSHMEM features a partitioned global address space, in which
each processing element (PE) has a private memory space, but that memory
space is mapped to symmetric addresses, that is, if a program declares a global
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array A, the local address of the element A[i] is the relevant parameter in a
communication call to target A[i] at every PE. The main advantage of the latter
model is that it enables the origin process in the operation to compute all the
remote addresses for the operation, which it can then issue directly without first
converting the addresses to the target’s address space. This is a major feature
that eases the development of applications using the one-sided communication
paradigm.

Communication Semantics Differences: OpenSHMEM is based on one-sided
communication. This is in contrast to the two-sided communication employed
in MPI LAMMPS. Although MPI has provided one-sided communication since
MPI-2 (i.e., MPI Get and MPI Put), two-sided communication programs domi-
nate the common practice of using MPI. In two-sided operations, every Send
operation matches a Receive operation. Each process provides a buffer, in the
local address space, in which the input or output are to be accessed. In con-
trast, in the one-sided model, communications are issued at the origin, without
any matching call at the target. Therefore, the operation progresses without an
explicit action at the target, which is then considered to be passive, and, the
origin PE must be able to perform all the necessary steps to issue and complete
the communication without explicit actions from the target. In particular, the
target doesn’t call an operation to provide the address of the target buffer, so
the origin must be able to locate this memory location (which is usually simple,
thanks to the symmetric address space).

Synchronization Differences: Although MPI provides an explicit synchronization
operation (i.e., MPI Barrier), most MPI two-sided communication operations
carry an implicit synchronization semantic. As long as a process does not pass a
particular memory location as a buffer in one of the MPI communication func-
tions, the process knows it enjoys an exclusive use of that memory location, and
it cannot be read from, nor written to, by any other process, until it is explic-
itly exposed by an MPI operation. Similarly, when the Send or Recv operations
complete, the process knows that any exposure of that memory has ceased, and
once again that memory can be considered exclusive. However, this is not true
in the one-sided communication model, where a process can be the target of
an operation at any time and the symmetric memory is exposed by default, at
all times. As a consequence, when a process performs a shmem put2, it cannot
rely on a corresponding MPI Irecv to implicitly synchronize on the availability
of the target buffer, and that synchronization must now be explicit. OpenSH-
MEM indeed provides a more flexible set of explicit synchronization operations,
like shmem fence, which guarantees ordering between two operations issued at
that origin; shmem quiet, which guarantees completion of all operations issued
at that origin (including remote completion); and shmem barrier *, a set of
group synchronizations that also complete all operations that have been posted

2 For brevity, in this paper we use the simplified nomenclature shmem put, shmem get,
which are not actual OpenSHMEM functions, but refer to the actual typed opera-
tions (like shmem double put, shmem long get, etc.).
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prior to the barrier. Although the explicit management of synchronization can be
complex, compared to the implicit synchronizations provided by the two-sided
model, the cost of synchronizing can be amortized over a large number of opera-
tions, and thereby has the potential to improve the performance of applications
that exchange a large number of small messages.

Collective Operations Differences: MPI proposes a fully featured interface to
manage fine grain grouping of processes that participate in communication oper-
ations. The communicator concept permits establishing arbitrary groups of
processes which can then issue communication operations (collective or oth-
erwise) that span that subgroup only. In contrast, OpenSHMEM attempts to
avoid having to perform message matching to reduce the latency, and conse-
quently does not have such fine-grained control over the group of processes par-
ticipating in a collective operation. OpenSHMEM features two kinds of collective
operations, those that involve all PEs (like shmem barrier all), and those that
involve a structured group of PEs, in which processes involved in the communi-
cation are those whose identifier is separated by a constant stride, which must be
a power of 2. This lower flexibility in establishing groups of processes on which
collective operations can operate can cause additional complications. Of particu-
lar relevance is the case where a collective synchronization is needed. Because the
OpenSHMEM group synchronization operations are operating on groups that do
not necessarily match the original grouping from the MPI application (like the
plans in the remap 3d function), one is forced to either (1) use point-to-point
synchronizations to construct one’s own barrier that maps the PE group at hand,
which could prove more expensive than an optimized barrier operation; or (2)
use a global synchronization operation that spans all PEs, thereby synchroniz-
ing more processes than are necessary, with the potential outcome of harming
performance with unnecessary wait time at theses processes.

4 Methodology

In this section we expose the challenges we have faced when porting the remap 3d
LAMMPS function from MPI to OpenSHMEM. We then discuss a number of
optimization strategies for the explicit management of process synchronization.

4.1 MPI Features in the remap 3d Function

The remap 3d function we focus on in this work employs non-blocking com-
munication primitives to exchange data between MPI processes of a particular
subgroup. Peers and message sizes are calculated and obtained from the remap
plan data structure. Each plan corresponds to a subset of processes (in each
direction) and is mapped to an MPI communicator. Three nested for loops
enclose the MPI Irecv, MPI Send, and MPI Waitany calls and form a many-to-
many, irregular communication pattern. Of particular interest is the usage of the
MPI Send function in the original code, which sequentializes the multiple sends
from a process, thereby creating a logical ordering and implicit synchronizations
between groups of processes.
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During the 3D-FFT transpose, the data to be transferred for each PE comes
from the in buffer, however from non-contiguous memory locations. The MPI
implementation packs the scattered data to a contiguous buffer before perform-
ing the send operation. Similarly, the receive process stores the incoming data
in a temporary contiguous scratch buffer as well. Only after the MPI Irecv is
issued can the data reach the target scratch buffer. The received data is then
unpacked to the corresponding locations in the out buffer.

Fig. 2. Communication pattern between two processes, with MPI (left), and OpenSH-
MEM (right). For simplification, in the figure, a process is shown as having an exclusive
role; in reality every process is both a sender and a receiver with multiple peers during
each FFT iteration.

4.2 Initial Porting Effort

In this section we discuss the porting effort to create a basic OpenSHMEM code
which is functionally equivalent to the original MPI remap 3d function. Different
performance optimizations will be presented in later sections.

From two-sided to one-sided: The two-sided MPI Send and MPI Irecv pair can
be transformed into a one-sided operation by either issuing a shmem put at the
sender, or a shmem get at the receiver. In this test case, shmem put is selected
because it improves the opportunity for communication and computation over-
lap. With the shmem get semantic, the operation completes when the output
buffer has been updated (that is, the communication has completed). Essen-
tially, shmem get is a blocking operation, and there are no non-blocking variants
in the current OpenSHMEM specification. Therefore, in a single threaded pro-
gram, shmem get leaves little opportunity for initiating concurrent computations.
The shmem put semantic is more relaxed: the shmem put operation blocks until
the input buffer can be reused at the origin. It does not block until the remote
completion is achieved at the target, which means that the operation may com-
plete while communication is still ongoing (especially on short messages). More
importantly, the approach closely matches the original MPI code logic, in which
computation is executed at the receiver after posting non-blocking MPI Irecv
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1 ...

2 shmem_int_max_to_all (& scratch_size , &scratch_size , 1, 0, 0, nprocs ,

3 pWrk1 , pSync1);

4 plan ->scratch = (FFT_DATA *) shmem_malloc(scratch_size*sizeof(FFT_DATA ));

5 ...

Listing 1.1. Allocating the scratch buffers in the Partitioned Global memory space,
as needed for making them targets in shmem put.

1 . . .
2 plan−>r emo t e o f f s e t = ( int ∗) shmem malloc ( nprocs ∗ s izeof ( int ) ) ;
3 for ( i = 0 ; i < plan−>nrecv ; i++)
4 shmem int p(&plan−>r emo t e o f f s e t [me ] , plan−>r e c v bu f l o c [ i ] ,
5 plan−>r e cv proc [ i ] ) ;
6 shmem fence ( ) ;
7 . . .

Listing 1.2. Exchanging the offsets in the target scratch buffers; a parameter to
shmem put that was not required with MPI Send.

operations so as to overlap the communication progress, meanwhile blocking
sends are used, which have the same local completion semantic as shmem put
operations.

Allocating the Symmetric Scratch Buffers: In shmem put, the target data buffer
(the scratch buffer in our case) must be globally addressable. Hence, the memory
space referenced by plan->scratch is allocated in the partitioned global address
space of OpenSHMEM (line 4 in Listing 1.1). The user is responsible for ensur-
ing that the shmem malloc function is called with identical parameters at all
PEs (a requirement to ensure that the allocated buffer is indeed symmetrical).
As a consequence, although processes may receive a different amount of data
during the irregular communication pattern, the scratch buffer must still be of
an identical size at all PEs, which must be sufficient to accommodate the maxi-
mum size across all PEs. This concept simplifies the management of the global
memory space at the expense of potentially increasing the memory consumption
at some PEs. Another benign consequence is the need to determine, upon the
creation of the plan structure, the largest memory space among all PEs (line 2
in Listing 1.1).

Irregular Communication Patterns and Target Offsets: Except for the above
communication semantics difference, most of the communication parameters
at the sender remain the same (e.g., send buffer address and size, target peer
processes). A notable exception is that, unlike in the two-sided model in which
the receiver is in charge of providing the target buffer address during the
MPI Irecv, in the OpenSHMEM version it must be known at the origin before
issuing the shmem put. Although the scratch buffers are in the symmetric address
space, and it is therefore simple to compute the start address of this buffer, the
particular offset at which a process writes into the scratch buffer is dependent



From MPI to OpenSHMEM: Porting LAMMPS 129

upon the cumulative size of messages sent by processes whose PE identifier is
lower. As the communication pattern is irregular, that offset is not symmetric
between the different PEs and cannot be inferred at the origin independently.
Ultimately, this complication stems from the different synchronization models
between one-sided and two-sided operations: as the sender doesn’t synchronize
to establish a rendezvous with the receiver before performing the remote update,
in the one-sided model, the target address must be pre-exchanged explicitly. For-
tunately, we noted that, in the remap 3d function, the offset in the target buffer
is invariant for a particular plan, hence we only need to transmit the offset in
the target buffer to the sender once, when the remap 3d plan is initially created.
An extra buffer named plan->remote offset is allocated in the plan, and used
to persistently store the offsets in the peers target buffer locations, as shown in
Listing 1.2. When the same plan is executed multiple times, shmem put oper-
ations can thereby be issued directly without further exchanges to obtain the
target offset.

Signaling shmem putOperations Completion: The original MPI program can rely
on the implicit synchronization carried by the explicit exposure of the memory
buffers between the MPI Irecv, MPI Send, and MPI Waitany operations in order to
track completion of communication operations. In the OpenSHMEM-based imple-
mentation, the target of a shmem put is passive, and cannot determine if all the
data has been delivered from the operation semantic only. To track the completion
of the shmem put operations, we add an extra array plan->remote status which
contains the per origin readiness of the target buffer. The statuses are initialized as
WAIT before any communication happens. After the shmem put, the sender uses a
shmem int p to update the status at the target to READY. A shmem fence is used
between shmem put and shmem int p to ensure the order of remote operations.
The target PEs snoop the status memory locations to determine the completion
of the shmem put operations from peers.

Signaling Target Buffer Availability: It is worth noting that the same remap plan
is used multiple time during the 3d-FFT process. Hence the scratch buffer could
be overwritten by the next shmem put, if the sender computes faster and enters
the next iteration before the data is unpacked at the receiver. It is henceforth
necessary to protect the scratch buffer from early overwrite. In the initial version,
we implemented this receive buffer readiness synchronization in OpenSHMEM
with an MPI Barrier (this version of the code thereafter referred to as Hybrid-
Barrier). We use an MPI Barrier rather than any of the shmem barrier * func-
tions because we need to perform a synchronization in a subgroup whose shape
is not amenable to OpenSHMEM group operations, while MPI Barrier is able
to force a synchronization on an arbitrary group. Figure 2 reflects the schematic
structure of applying shmem put for point-to-point communication in remap 3d.

An arguably more natural way of preventing that overwrite would be to
synchronize with shmem int p when the receiver scratch buffer can be reused,
and have the sender issue a shmem wait to wait until that target buffer becomes
available. However, each process updates the scratch buffers at multiple targets,
and this strategy would result in ordering these updates according to the code
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flow order, rather than performing the shmem put operations opportunistically
on the first available target. Hence, it would negate one of the advantages over
the traditional MPI Send based code, without making the overlap of computation
and communication more likely when uneven load balance can make some targets
significantly slower than others. We will discuss alternative approaches that avoid
this caveat in the optimization Sect. 4.3.

4.3 Optimizations

Non-blocking shmem put to Avoid Packing Data: As mentioned above, the MPI
implementation of LAMMPS packs the non-contiguous data into a contiguous
buffer before sending. A root reason comes from the higher cost of sending mul-
tiple short MPI messages compared to a single long one. The one-sided model,
and the decoupling of the transfer and synchronization offer an opportunity for
reaching better performance with OpenSHMEM when multiple small messages
have to be sent, henceforth opening the possibility to directly transfer small,
scattered data chunks without first copying into an intermediate pack buffer. As
an example, shmem put demonstrates a great performance advantage for send-
ing multiple small messages when it is implemented over the dmapp put nbi
function, a non-blocking implicit put in the Cray DMAPP API [1].

Still based on the HybridBarrier , a new version (called NoPack) removes
the data packing. Each PE transfers the scattered data of size nfast to its peers
directly, without resorting to an intermediate pack buffer. To transfer a full
sub-domain of size nslow × nmid × nfast, a number of nslow × nmid shmem put
operations are required.

Eliminating Synchronization Barriers: In the HybridBarrier version, MPI point-
to-point communications are replaced with OpenSHMEM one-sided communi-
cation semantics. To enforce synchronization between a sender and a receiver,
a polling mechanism is employed. However, even with such a mechanism, an addi-
tional synchronization, in the initial OpenSHMEM version implemented with an
MPI Barrier, is still needed to prevent the next iteration from issuing shmem put
and modifying the dataset on which the current iteration is computing. This bar-
rier could cause some performance loss, especially at large scale or when the load
is not perfectly balanced.

In the ChkBuff version, the barrier is replaced by a fine grain management of
the availability of the scratch buffer. A pair of communication statuses, WAIT and
READY, are introduced to mark the status of the receiver’s scratch buffer. A new
array plan->local remote status stores, at the sender, the statuses of target
receive buffers at all remote PEs. Before issuing a remote write on a particular
PE’s scratch buffer, the origin checks the availability status of the buffer in
its local array. If the status is still set to WAIT, the shmem put is delayed to a
later date when, hopefully, the target PE will have unpacked the scratch buffer,
thereby making it safe for reuse. When the target finishes unpacking the scratch
buffer, it remotely toggles the status at the sender to READY (with a shmem int p
operation), to inform the sender that it may start issuing shmem put operations
safely.
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These synchronizations mimic the establishment of rendezvous between two-
sided matching send-recv pairs. However, the MPI two-sided rendezvous can
start at the earliest when both the sender and the receiver have posted the
operations. In contrast, in the one-sided version, the receiver can toggle the
availability status much earlier at the sender, as soon as the unpack operation is
completed, which makes for a very high probability that the status is already set
to READY when the sender checks for the availability of the target buffer. Unfor-
tunately, we found that on many OpenSHMEM implementations, the delivery
of shmem int p may be lazy, and delayed, negating the aforementioned advan-
tage. The simple addition of a shmem quiet call after all shmem int p have been
issued is sufficient to force the immediate delivery of these state changes, and
henceforth improves the probability that the state is already set to READY when
a sender checks the status.

Opportunistic Unpacking: In the ChkBuff implementation, a PE unpacks its
incoming data only after it completed the puts for all the outgoing data. The
slightly modified AdvChkBuff version embraces a more dynamic, opportunistic
ordering of the unpack operations. After issuing the shmem put targeting the
ready peers, the sender skips the peers which are still marked as in state WAIT,
and instead switches to the task of unpacking the available incoming data. Before
the next iteration, the sender then checks if it still has un-issued shmem put oper-
ations from the current plan and satisfies them at this point. A major advantage
of this method is that it overlaps the rendezvous synchronization wait time at
the sender with data unpacking.

A design feature in the LAMMPS communication pattern, however, adds
some complexity to the AdvChkBuff strategy. In the same remap 3d, the in and
out buffers could point to the same memory blocks, in certain cases. This is
not an issue when a PE sends out (or packs) all the outgoing data from the
in buffer before it starts unpacking the received data from the scratch buffer.
However, in the AdvChkBuff strategy, the unpack operation can happen before
shmem put. A memory block from the in buffer, where the data is waiting to
be transferred to a slow PE, could thereby be mistakenly overwritten by the
unpacking of the scratch buffer, touching that same block through the aliased
pointer in the out buffer. This unexpected memory sharing between the two data
buffers obviously threatens program correctness. To resolve this cumbersome
sharing, in the conditional case where that behavior manifests, a temporary
duplicate of the out buffer is allocated, and the unpack happens in that copy
instead. The next iteration of the 3D-FFT will then consider that buffer as the
input memory space, and the original buffer is discarded when the iteration
completes (hence the shmem put operations have all completed as well).

5 Evaluation

5.1 Experimental Setup

During the evaluation, we perform both strong and weak scaling experiments. In
both cases we consider the rhodopsin protein simulation input problem. For the
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strong scaling case, the input problem size remains constant at 8× 8× 8× 32 K
atoms. For the weak scaling tests, the input problem size is set proportionally
to the number of PEs, so that each processor handles a load of 32 K atoms.

The evaluations are performed on Titan, a Cray XK7 supercomputer located
at ORNL (with Cray-MPICH 6.3.0 and Cray-shmem 6.3.0 software stacks). On
this machine, even when two different allocations request the same number of
nodes, they may be deployed on different physical machines, connected by a dif-
ferent physical network topology. This has been known to cause undesired per-
formance variability that prevents directly comparing the performance obtained
from different allocations. We eliminate this effect by comparing MPI versus
OpenSHMEM on the same allocation, and by taking averages over 10 samples
of each experiment. We present the total time of the LAMMPS application with
error bars to illustrate any increase (or lack thereof) in the performance variabil-
ity, and we then present the speedup of the considered OpenSHMEM enhanced
variants over the MPI implementation.

Fig. 3. Total LAMMPS execution time comparison between the following versions:
original MPI, HybridBarrier , and NoPack (with and w/o non-blocking shmem put).

5.2 Comparison Between the HybridBarrier and MPI Versions

Figure 3 presents the strong scaling and weak scaling of LAMMPS for the orig-
inal version where the remap 3d function is purely implemented with MPI, and
the two hybrid versions (HybridBarrier and NoPack) where the remap 3d func-
tion features shmem put communication and OpenSHMEM based communica-
tion completion signaling; yet the protection against premature inter-iteration
data overwrite relies on an MPI Barrier synchronization. The first observation
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is that the standard deviation of results is very similar between all versions.
The conversion to OpenSHMEM has not increased the performance variability.
In terms of speedup, the HybridBarrier version enjoys better performance than
the MPI version in all cases. The strong scaling experiments demonstrate an
improvement from 2 % at 512 PEs, to over 9 % at 4096 PEs, which indicates
that the OpenSHMEM APIs indeed accelerate the whole communication speed
by amortizing the cost of multiple communication in each synchronization. This
is mainly due to the per-communication cost of synchronization; in the origi-
nal loop over MPI Send, each individual communication synchronizes with the
matching receive, in order; in contrast, and despite the coarse granularity of
the MPI Barrier synchronization, which may impose unnecessary wait times
between imperfectly load balanced iterations, the cost of synchronizing in bulk
numerous shmem put operations to multiple targets is amortized over more com-
munications and permits a relaxed ordering between the puts. Even in the weak
scaling case, in which the communication speed improvement is mechanically
proportionally diminished, the HybridBarrier version still outperforms the MPI
version by 4 % at 4096 PEs, and as the system scale grows, the performance
benefit of OpenSHMEM increases, which indicates that the OpenSHMEM pro-
gramming approach has the potential to exhibit better scalability. One has to
remember that these improvements are pertaining to the modification of a single
function in LAMMPS, which represents approximately 30 % of the total commu-
nication time, meanwhile the communication time is only a fraction of the total
time. Such levels of communication performance improvements are indeed sig-
nificant, and would be even more pronounced should all MPI operations, which
are still accounting for the most communication time in the hybrid version of
LAMMPS, were ported to OpenSHMEM.

5.3 Consequences of Avoiding Packing

Figure 3 also compares the NoPack version to the MPI version. When the default
environment respects the full, blocking specification for shmem put operations
(DMAPP PUT NBI=0), the performance of the NoPack version is reduced compared
to both the MPI and HybridBarrier versions, which both pack the data. With
this strict semantic, the injection rate for small messages is limited by the wait
time to guarantee that the source buffer can be reused immediately. On the Cray
system, the parameter (DMAPP PUT NBI=1) permits relaxing the shmem put oper-
ation semantic: the shmem put operations are allowed to complete immediately,
but the source buffer can be modified only after a subsequent synchronization
operation (like a shmem quiet) has been issued. With this option, neither the
MPI nor the NoPack versions performance are modified (an expected result, that
parameter has no effect on MPI, and the HybridBarrier version exchanges large
messages, and is therefore essentially bandwidth limited). However, the NoPack
version’s performance improves tremendously, as the injection rate for small
messages is greatly increased. This observation provides strong evidence that
the addition of a non-blocking shmem put could result in significant benefits for
some application patterns with a large number of small size message exchanges.
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Fig. 4. Total LAMMPS execution time comparison between the following versions:
original MPI, ChkBuff , and AdvChkBuff .

However, as is illustrated in the remap 3d function, the packing strategy proves
to be an effective workaround: even with non-blocking puts, the NoPack version
closely matches the performance of the HybridBarrier version.

5.4 Performance When Eliminating Group Barriers

The goal of the ChkBuff and AdvChkBuff versions is to eliminate the group syn-
chronization, employed in the HybridBarrier version, that avoid the premature
overwrite of the scratch buffer by a process that has advanced to the next iter-
ation. Their performance is compared to the MPI version in Fig. 4. The strong
scaling of these versions (Fig. 4a) generally perform better than the MPI ver-
sion, with a 2 % improvement from 512 PEs, and upto 5 % for 4096 PEs. In the
weak scaling case, the benefit manifests only for larger PEs counts, with a 3 %
improvement.

However, when comparing to the HybridBarrier version, presented in the pre-
vious Fig. 3, no further performance improvement is achieved. Although the bar-
rier has been removed, it is likely that the introduction of synchronization between
pairs of peers still transitively synchronize these same processes. In addition, the
busy waiting loop on the peer’s buffer status scans the memory and increases the
memory bus pressure. It finally appears that, in the OpenSHMEM model, trying
to optimize the scope of synchronizations can result in decreasing performance,
by synchronizing at too fine a granularity, which actually mimics the traditional
implicit synchronization pattern found in MPI two-sided applications.
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5.5 Discussion

This porting effort has led to a few observations on the entire process. Today,
MPI is considered as the de-facto programming paradigm for parallel applica-
tions, and PGAS type languages are still only challengers. Shifting from one
programming model to another is not an easy task: it takes time and effort to
educate the developers about the new concepts, and then correctly translate the
application from one programming paradigm to another.

The Good: Although MPI is a more stable, well-defined API, PGAS based
approaches have clear advantages for some types of usage patterns. Until Open-
SHMEM reaches the same degree of flexibility and adaptability, being able to
compose the two programming paradigms in the context of the same application
is a clear necessity. Our experience confirmed that it is indeed possible to mix
the programming models, and to upgrade an application in incremental steps,
focusing on performance critical routines independently in order to take advan-
tage of the strong features of each model, and improve the performance and
scalability of a highly-optimized MPI application.

An area where the PGAS model exhibit a clear advantage over MPI is the
handling of unexpected messages. when MPI applications get out of sync due to
imbalance in the workload or system noise, most messages become unexpected,
forcing the MPI library to buffer some data internally to delay the delivery
until the posting of the corresponding receive call. This temporary buffering has
an impact on the memory accesses as it implies additional memory copies and
thus extra overhead on the memory bus. As the memory is always exposed in
OpenSHMEM, even when the target is passive, this pathological usage pattern
cannot be triggered. In exchange, some of the implicit synchronization semantic
carried by the send-recv model is lost, and explicit synchronization becomes
necessary.

The Bad: One of the most unsettling missing features from the OpenSHMEM
standard is the capability to work with irregular process groups. The current
group collective operations are limited to well defined process topologies, mostly
multi-dimensional cubes. As a consequence, they lack the flexibility of their
MPI counterparts which operate on communicators and can express collective
behaviors across arbitrary groups of processes. This leads to less natural syn-
chronization points, especially in non-symmetric cases.

Another missing feature is a standardized support of the non-blocking put
capabilities of the network. Forcing the shmem put operation to ignore its strict
specification and relaxing the total completion of the operation to the next syn-
chronization does improve tremendously the injection rate for small messages.
However, today, one has no portable way to achieve this result in the OpenSH-
MEM specification, and relying on packing still remains the best bet to achieve
the maximum bandwidth when the input data are scattered.

The Ugly: One of the selling points of OpenSHMEM is the exposure at the user
level of bare metal network primitives, with a promise for a more direct access
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to the hardware and higher performance compared with more abstract program-
ming paradigms, such as MPI. However, the restricted API of OpenSHMEM,
and especially the lack of high level primitives such as collective communica-
tion with neighborhood communication patterns, forces the application develop-
ers to design and implement their own synchronization operations, making the
applications sensitive to hardware and network topological feature variations.
Furthermore, the explicit management of synchronization from the user code
(instead of the implicit synchronization carried by the two-sided operations) can
result in notable performance differences, depending on the strategy one employs
to restore the required synchronization for a correct execution. We found that
some theoretically promising optimizations can actually yield a negative effect
on overall performance, and that the reasons for these detrimental consequences
are often subtle and hard to predict. Overall, the balance between portability
and performance is weaker than in MPI.

6 Conclusions and Future Work

In this work, we explore the process of converting the communication-intensive
part of an MPI-based application, LAMMPS, to OpenSHMEM. We reveal some
major programming challenges introduced by the semantics and syntax differ-
ences between the two programing models. We demonstrate how to transform
a common communication pattern based on MPI point-to-point communica-
tion into the corresponding OpenSHMEM version. We evaluate our work on the
Titan supercomputer looking at both strong scaling and weak scaling tests up to
4096 processes. While our work was successful in demonstrating a clear advan-
tage in terms of performance for the OpenSHMEM hybridized version, choosing
between different approaches and optimizing is not straightforward. Looking
at more details and differences between different versions employing OpenSH-
MEM reveal counter-intuitive and significant performance differences between
the possible explicit synchronization strategies that are not always matching
expectations. It becomes apparent that a mechanical conversion from MPI to
OpenSHMEM is not the most suitable approach. Instead, extracting the most
performance from a programming paradigm requires adapting the underlying
algorithm to the concepts exposed by the paradigm, rather than a simple one-
to-one translation.

Our future work will address this last point, making deeper changes in
the algorithm to avoid the additional synchronizations between processes. This
includes investigating the opportunities to reduce the number and scope of syn-
chronizations in the OpenSHMEM-based LAMMPS. We can also combine the
presented optimizations, for example investigate if it is possible to remove the
packing in the AdvChkBuff version. Last, with only a subset of the commu-
nication routines upgraded to OpenSHMEM, we have observed a significant
reduction in runtime for the entire application. We will therefore identify other
communication-intensive functions in LAMMPS and start the process of replac-
ing them with their OpenSHMEM counterparts.
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